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1 Introduction and summary

The relevant degrees of freedom in QCD at large distances are still poorly understood. A

perturbative approach in this domain is rendered impossible by the lack of convergence

and by the existence of multiple solutions to the gauge fixing condition (Gribov copies) [1].

Quasi-classical solutions are also poorly defined at strong coupling, and may not dominate

the amplitudes in the presence of large quantum corrections.

A possible way of making QCD treatable at large distances is to use an effective theory

encoding the known symmetries of the Lagrangian. At very large distances, the effective

degrees of freedom are pions and the corresponding effective theory is based on sponta-

neously broken chiral invariance. Another symmetry present in QCD in the chiral limit is

scale invariance — indeed, in the limit of massless quarks the Lagrangian does not pos-

sess any dimensionful parameters and is therefore invariant with respect to rescaling of

coordinates, xµ → λxµ. In real world, this invariance is lost — the hadrons possess finite

masses and sizes, so the scale symmetry is broken. It is therefore tempting to formulate an

effective theory of broken scale invariance in terms of the corresponding Goldstone boson

- the dilaton. Since the scale transformation does not affect any quantum numbers, the

corresponding particle has to be a scalar — a scalar glueball or perhaps, in the presence

of light quarks, a σ or f0 meson.

– 1 –



J
H
E
P
0
6
(
2
0
0
9
)
0
5
5

There is a well-known problem with this approach however: unlike chiral symmetry,

the scale invariance is broken not spontaneously, but explicitly [2, 3]. Indeed the quantum

effects and the regularization required to treat them bring in a dimensionful constant

— ΛQCD [4]. As a result, there is no limit in which the dilaton can become massless.

Nevertheless, the corresponding effective theory of a scalar field can still be formulated [5,

6]– it is fixed unambiguously by the Ward identities of broken scale invariance. However

how useful this theory can be depends on how softly the scale symmetry is broken, and how

massive the resulting dilaton is. In gluodynamics, the dilaton is identified with the scalar

glueball. The mass of the scalar glueball according to the lattice calculations is quite large,

MG ≃ 1.5 ÷ 1.7 GeV [7]. While this is the lightest glueball, its mass is not significantly

smaller than the masses of glueballs with other quantum numbers [7], so there is no reason

to expect that the physics at large distances will be dominated by the dynamics of scalar

glueballs. Moreover, the corresponding Compton wavelength ∼ M−1
G is much shorter than

the confinement radius ∼ Λ−1
QCD, so it is likely that the dynamics described by the effective

theory of glueballs is entangled with the gluon dynamics. This calls for an extension of the

effective theory to include both scalar fields and gluons, and such an extension has been

carried out in refs.[8, 9]. The resulting theory involves the scalar dilaton field χ interacting

with the gluon field characterized by F a
µν .

In this paper we will explore the dynamics of this model further; let us briefly summa-

rize our findings. In the absence of color fields, the minimum of the effective potential for

the scalar field χ is at χ = 0, and the Lagrangian describes the theory of self-interacting

scalar glueballs. However as the strength of the color field increases, the minimum at χ = 0

disappears and a non-zero expectation value for (F a
µν)2 < 0 develops, corresponding to the

formation of a confining chromo-electric flux tube. At the same time the potential for the

field χ vanishes, and the dilaton excitation becomes massless.

While the resulting theory of gauge bosons interacting with a scalar field may look sim-

ilar to a Higgs model, there is a big difference — the presence of dilatons does not break the

gauge symmetry. Instead, the propagator of gluons in Coulomb gauge acquires a infrared

divergent piece ∼ 1/k4 that corresponds to linear confinement in coordinate space. Such a

propagator has been shown to emerge once the multiple solutions of gauge fixing condition

(Gribov copies) are eliminated [1]; a confining Coulomb propagator was shown to be a neces-

sary condition for confinement [10] (for a review, see e.g. [11]). The presence of confinement

in the model of [8, 9] has been previously investigated by a different method in ref. [12].

The effective theory of [8, 9] allows a dual formulation as a classical Yang-Mills theory

on a curved conformal space-time background. Qualitatively, a geometrical interpretation

of confinement has been considered in Refs [13, 14].

There are many similarities between this and the previously proposed approaches:

the MIT bag model [15], the non-topological soliton model of Friedberg and Lee [16],

the Kogut-Susskind model [17], the color dielectric model [18], the gauge theory with a

dilaton formulated in [19], and most of all with the “perturbative confinement” program

of ’t Hooft [20]. Indeed, as we will explain below, the proposed approach corresponds to

the infrared renormalization of QCD. Once this infrared renormalization is performed, the

renormalized gluon propagator possesses the property of confinement. The advantage of the
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approach presented in this paper is that the structure of the effective theory is completely

determined by broken scale invariance of QCD.

In the picture developed in this paper the dominant degree of freedom at interme-

diate distances (distances shorter than the radius of confinement but longer than needed

for perturbation theory to apply) is the massless scalar excitation composed from gluon

fields. We will call it the “scalaron” to distinguish it from the massive glueball, or dilaton

state emerging at long distances. The existence of “scalarons” inside hadrons would have

very interesting implications — for example, since scalarons have zero spin, the total spin

carried by gluons at intermediate distances inside hadrons should be equal to zero. In

the physics of dense QCD matter, we expect that close to the deconfinement transition

scalarons should play an important dynamical role, possibly inducing a large bulk viscosity

in the system in accord with [21–23].

The paper is organized as follows. In section 2 we introduce the effective Lagrangian

of broken scale invariance. In section 3 we discuss its properties and show that it leads to

confinement. The structure of the confining gluon propagator is studied in more detail in

section 4. In section 8 we show that our effective theory can be viewed as a particular real-

ization of ’t Hooft’s “perturbative confinement” program. Section 6 contains a discussion

of strong coupling behavior in the infrared region, and of the energy density stored in the

flux tube. Finally, the discussion of the results is given in section 10.

2 Scale invariance of QCD and the effective theory

The invariance with respect to the scale transformation xµ → λxµ is a property of the QCD

Lagrangian in the chiral limit. Noether’s theorem requires the existence of the correspond-

ing conserved dilatation current sµ: ∂µsµ = 0. Since the divergence of dilatation current in

field theory is equal to the trace of the energy-momentum tensor ∂µsµ = θµ
µ, in conformally

invariant theories θµ
µ = 0. However quantum effects break conformal invariance [2, 3]:

∂µsµ = θµ
µ =

∑

q

mq q̄ q +
β(g)

2g
F aµνF a

µν , (2.1)

where β(g) is the QCD β-function, which governs the behavior of the running coupling

µ
dg(µ)

dµ
= β(g) . (2.2)

At low energy, an effective Lagrangian can be constructed which accounts for the bro-

ken conformal invariance. The simplest possible effective low energy Lagrangian involves

one scalar particle — dilaton [5, 6]. The form of the Lagrangian is uniquely determined by

the low energy theorems of QCD [24]. An elegant way to derive this effective Lagrangian

has been suggested by Migdal and Shifman in [6]. They noted that since the gluodynam-

ics is conformally invariant only in four dimensions, the anomalous contribution to the

divergence of the dilatation current appears — in the dimensional regularization scheme

— as a residual term in the 4D limit. As demonstrated in [6], if we formally couple the

gluodynamics to the conformal background gravity — described by a single scalar field

– 3 –
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h(x) — such a theory is conformally invariant in any D. This trick allows to account for

all symmetries of the low energy theory. A subsequent Legendre transformation to the

conjugate field χ(x) with a potential that has a classical minimum at χ = 0 yields then an

effective low energy Lagrangian satisfying all necessary constraints.

This derivation has been generalized in [8, 9] by including the gluon fields to describe

the transition region between the short and long distances. The corresponding Einstein-

Hilbert action reads

S =

∫

d4x
√−g

(

1

8π G
R − 1

4
gµν gλσ F a

µλ F a
νσ − e2h θµ

µ

)

, (2.3)

where the background metric is given by gµν(x) = eh(x) δµν , R is the Ricci scalar and

G is a dimensionful constant analogous to the Newton’s gravitational constant. Upon

substitution of the one-loop expression for θµ
µ in SU(3) from (2.1) and performing the

Legendre transformation we derive the following effective Lagrangian

L =
|ǫv|
m2

1

2
eχ/2 (∂µχ)2 +

(

|ǫv| + c
1

4
(F a

µν)2
)

eχ (1 − χ) − 1

4
(F a

µν)2 ; (2.4)

the energy density of the vacuum |ǫv| and the mass of the dilaton m are the parameters

of the theory. It is constructed in such a way that at χ = 1 (corresponding to some semi-

hard momentum scale M0) the terms containing the effective field χ cancel implying that

dynamics of the color fields is perturbative. This expresses the fact that M0 is a scale at

which the effective theory defined by (2.4) has to be matched onto the pQCD. The effective

theory (2.4) is non-renormalizable and requires introduction of a cutoff M0(m, |ǫv|) at some

short distance. In (2.4) we used notation c = |β(g0)|/2g0 with g0 ≡ g(M0). Note, that

c ≪ 1 for any phenomenologically reasonable g0.

In the absence of color fields, the dilaton potential has a minimum at χ = 0 correspond-

ing to the physical vacuum with the energy density V (χ = 0) = −|ǫv|. The position of the

minimum (χ = 0) does not change when the color fields are either predominantly magnetic

(corresponding to (F a
µν)2 = 2 (Ba2 − Ea2) > 0) or electric but sufficiently weak so that

|ǫv| + c
1

4
(F a

µν)2 > 0. (2.5)

However, the presence of a sufficiently strong color electric field with (F a
µν)2 = 2 (Ba2 −

Ea2) < 0 such that |(F a
µν)2| > 4|ǫv|/c flips the sign of the dilaton potential and the ex-

tremum at χ = 0 becomes a maximum rather than a minimum. As we will discuss below,

this transition corresponds to the formation of color electric flux tube. Since at this point

the dilaton potential in (2.4) vanishes, the formation of the flux tube is accompanied by

the emergence of a massless dilaton excitation — the “scalaron”.

3 Confinement by chromo-electric flux tubes

Consider the Lagrangian (2.4) which defines our effective low energy theory [8, 9]. It is

valid at long distances r ≥ 1/M0 ≡ r0, where M0 is a scale corresponding to χ = 1. At
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this scale our effective theory is to be matched onto the pQCD; indeed at χ = 1 our La-

grangian (2.4) becomes simply the Lagrangian of gluodynamics. The equation of motion

of the dilaton field is

|ǫv|
m2

∂µ

(

eχ/2 ∂µχ
)

− |ǫv|
4m2

eχ/2 (∂µχ)2 + χ eχ |ǫv| + χ eχ c
1

4
(F a

µν)2 = 0. (3.1)

The trace of energy-momentum tensor can be calculated directly from (2.4) using

θµ
µ = gµν

(

2
∂L

∂gµν
− gµν L

)

+
8|ǫv|
m2

∂2
µ eχ/2, (3.2)

where the last term on the right hand side is the total derivative. Using equation of motion

of the dilaton field (3.1) one arrives at

θµ
µ = − 4 |ǫv| eχ − χ eχ c (F a

µν)2 . (3.3)

Since the vacuum at large distances corresponds to χ = 0, the color fluctuations represented

by the second term in the r.h.s. of (3.3) decouple — the properties of the physical vacuum

are determined by the fluctuations of the dilaton field.

At small dilaton momenta its kinetic term is much smaller than the rest of terms

in (2.4). It catches up only at distances r ∼ 1/m. Therefore, if r0 ≫ 1/m the kinetic term

remains small in the entire region of validity of the effective theory r ≥ r0. We will verify

later that this is indeed a valid assumption. Thus, we drope the kinetic term in (2.4) and get

L ≈
(

|ǫv| + c
1

4
(F a

µν)2
)

eχ (1 − χ) − 1

4
(F a

µν)2 (3.4a)

= |ǫv| eχ (1 − χ) − 1

4
[−eχ (1 − χ) c + 1] (F a

µν)2; (3.4b)

this action implies that equation of motion for the dilaton is a constraint on the gluon field.

Extremizing the Lagrangian (3.4b) with respect to χ yields

χ eχ

(

|ǫv| + c
1

4
(F a

µν)2
)

|min = 0 . (3.5)

One solution to (3.5) is the physical vacuum at χ = 0. However, once the chromo-electric

gluon field (F a
µν)2 < 0 becomes sufficiently strong, (3.5) possesses a solution for any χ 6= 0 if

(F a
µν)2|min = 2( ~Ba2 − ~Ea2)|min = −4|ǫv| c−1 . (3.6)

Assuming that the color field is created by static sources and neglecting the chromo-

magnetic component of the field, the magnitude of the chromo-electric field from (3.6)

is given by

( ~Ea
vac)

2 =
2|ǫv|

c
. (3.7)

Unlike in pQCD, where (F a
µν)2|min = 0, the minimum of the effective theory corresponds to

the finite chromoelectric field Ea. If the color field is weaker than (3.7), it is expelled from

– 5 –
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the vacuum, the ground state is at χ = 0, and the dynamics is described by interacting

excitations above this vacuum — the scalar fields χ.

Since the scalar field χ coupled to the chromo-electric field in the effective action (2.4)

is color-singlet, the color dynamics at large distances becomes frozen. We thus will em-

ploy the quasi-Abelian gauge [26] Aa
µ = φ(r) δa1 δµ0, with r2 = xix

i, i = 1, 2, 3. In this

gauge (3.6) reads

(~∇φc(r))
2 = 2|ǫv| c−1 ≡ ~E2

vac (3.8)

with the solution φc(r) = | ~Evac| r describing the classical background color field at large

distances.

Consider now the Coulomb potential induced in the presence of this background. We

can define a renormalized at large distances potential by subtracting the background po-

tential φc(r). This procedure corresponds to the infrared renormalization. The Laplace

equation for the renormalized Coulomb potential reads

~∇2[φren(r) − φc(r)] = g δ(~r) . (3.9)

It is solved by the Cornell potential

φren(r) = − g

4πr
+ | ~Evac| r , (3.10)

where we used the identity ~∇2r−1 = −4πδ(~r). We have found that the effective theory (2.4)

is confining.

Let us emphasize again that eq. (3.6) requires the dilaton mass to vanish when the

color flux tube is formed. At large distances r ≫ r0 the quantum corrections build up

to produce a significant dilaton mass which corresponds to the scalar glueball mass. The

appearance of the massless scalar particle — the “scalaron” — is directly related to the

condition (3.6) necessary for the confinement to occur. Therefore, the dilaton becoming a

true massless Goldstone boson of broken scale symmetry signals the onset of confinement.

4 Matching to perturbation theory: the effective lagrangian at χ ≃ 1.

As we already discussed above, in the presence of strong chromo-electric fields exceed-

ing (3.7) the dilaton potential in (2.4) changes the sign, and the extremum at χ = 0 turns

from a minimum to a maximum. The vacuum then shifts to the maximally allowed by

our effective theory value χ = 1. At χ = 1 the effective Lagrangian (2.4) becomes the

Lagrangian of gluodynamics. Since the effective dilaton potential V (χ) vanishes at χ = 1,

the energy density in this case is determined solely by the energy density of the gluon field,

and has no contribution from the dilaton condensate. Likewise, in the expectation value

of the trace of the energy-momentum tensor (3.3) at χ = 1 the dilaton contribution and

the contribution of the background flux field cancel each other. Therefore, to discuss the

quantum dynamics at short distances corresponding to the vicinity of χ = 1 we have to

expand the dilaton field around this value, and at the same time to expand the gluon field

around the classical flux tube background fixed by (3.7).

– 6 –
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ν

Figure 1. Interactions in (4.3) to the order g0. Helix line represents a gluon, dashed line —

classical color field, solid line — dilaton.

To accomplish this, we introduce a new field φ(x) through

χ(x) = 1 − v φ(x) , v ≡
√

m2

|ǫv| e1/2
, (4.1)

and decompose the gluon field as Aa
µ → Aa

µ+Aa
µ, where Aa

µ is a classical field satisfying (3.8)

and Aa
µ is a quantum fluctuation. The field strength decomposes as follows:

F a
µν → F a

µν + DµAa
ν − DνAa

µ + g2fabcAb
µAc

ν , (4.2)

where now Fµν is the field strength of the classical field and Dµ = ∂µ − igAa
µta is the

covariant derivative. Expanding (2.4) in powers of v φ(x) to the second order we derive

L =
1

2
(∂µφ)2 − 1

4
(F a

µν + DµAa
ν − DνAa

µ + g2fabcAb
µAc

ν)
2

+e(v φ − v2φ2)
1

4

[

2F a
µν(DµAa

ν − DνAa
µ + g2fabcAb

µAc
ν)

+(DµAa
ν − DνAa

µ + g2fabcAb
µAc

ν)
2

]

(4.3)

Feynman diagrams to the order g0 are displayed in figure 1. The corresponding rules read:

Va = 2 c e v2 [(p1 · p2)gµν − p1µp2ν ] δab , (4.4a)

Vb = − c e v [(p1 · p2)gµν − p1µp2ν ] δ
ab , (4.4b)

Vc = 2 c e v2 [Aa
µ(p2)(p1 · p2) − p2µ(p1 · Aa(p2))] , (4.4c)

Vd = −c e v [Aa
µ(p2)(p1 · p2) − p2µ(p1 · Aa(p2))] , (4.4d)

where p’s are gluon momenta as shown in figure 1. The effective Lagrangian (4.3) can be

used to compute non-perturbative corrections to QCD amplitudes.

5 The gluon propagator

For phenomenological applications it is convenient to determine the leading non-

perturbative correction to the gluon propagator. Note that the renormalized poten-

tial (3.10) satisfies the following equation

~∇4φren(~r) + 8π | ~Evac| δ(~r) = g ~∇2 δ(~r), (5.1)

– 7 –
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which we Fourier transform into

φren(~k) = − g

~k2
− 8π | ~Evac|

~k4
. (5.2)

Therefore, the required expression for the renormalized gluon propagator in the Coulomb

gauge is

D(~k2) =
1

k4

(

−~k2 − µ2
)

(5.3)

where we denoted

µ2 =
8π | ~Evac|

g
. (5.4)

The gluon propagator with a ∼ 1/~k4 behavior in the infrared has been advocated before [1,

10]. In particular, it has been argued [28, 29] that such a behavior provides a way of

extending the reach of perturbative QCD into the semi-hard region.

6 Strong coupling in the infrared

We wish now to examine the behavior of the strong coupling at long distances. Let us

concentrate on the color sector of the effective Lagrangian (2.4) and introduce the electric

susceptibility of QCD vacuum

ǫ(χ) ≡ Z(χ) = 1 − c eχ (1 − χ) , (6.1)

If we now rescale the gluon field potentials as Āa
µ = gAa

µ and F̄ 2 = g2F 2, the La-

grangian (2.4) can be written as

L =
|ǫv|
m2

1

2
eχ/2 (∂µχ)2 + |ǫv| eχ (1 − χ) − 1

4

ǫ(χ)

g2
(F̄ a

µν)2 , (6.2)

The form of (6.2) implies the behavior of the renormalized strong coupling in the presence

of dilaton background:

αs(χ(r)) =
αs(M0)

ǫ(χ)
=

αs(M0)

1 − c eχ (1 − χ)
. (6.3)

At χ = 1 the coupling is αs(M0), which is consistent with our procedure of matching onto

perturbation theory at scale M0 (and the corresponding distance r0 = M−1
0 ). Note that in

the physical vacuum χ = 0, coupling constant becomes

αs(χ → 0) =
αs(M0)

1 − c
; (6.4)

since c ≪ 1, the effective coupling in our effective theory remains quite small at large

distances, and the leading quantum corrections arise from the interactions with the

dilaton fields.

To determine the distance r0 at which matching to the pQCD takes place, we write

down the Yang-Mills equations in the presence of the point-like source[27]:

Dab
ν

(

ǫ(χ) F̄ b
νµ

)

= ja
µ , Dab

µ = δab∂µ + f bacĀc
µ , (6.5)

– 8 –
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where Āa
µ = gAa

µ and F̄ 2 = g2F 2. In the quasi-Abelian gauge we get for the radial

component of the electric field of a point source

Ē =
1

4πr2 ǫ(χ)
(6.6)

To find r0 where our effective theory matches onto the pQCD we note that the classical

minimum corresponds to E = Evac (see (3.8)) and set χ = 1, that is ǫ(χ) = 1. We obtain

r0 =

√

g

4πEvac
. (6.7)

7 The structure of the flux tube

We can now determine the profile of the energy density stored in the gluon-dilaton con-

figuration as a function of coordinate r. For the energy density we obtain from the La-

grangian (2.4):

θ00(x) =
|ǫv|
2m2

[

(∂0χ)2 + (∂iχ)2
]

eχ/2 − |ǫv| eχ (1 − χ)

+

(

−F a0λF a0
λ +

1

4
(F a

λσ)2
)

(1 − c eχ (1 − χ)) , (7.1)

where i = 1, 2, 3. For the constant dilaton field and the Coulomb gauge we work in we have

θ00 = −|ǫv| eχ (1 − χ) +
1

2
Ē2 1

g2
(1 − c eχ (1 − χ)) . (7.2)

Setting E = Evac in (6.6) we derive near r = r0 (where the Coulomb law (6.6), rather than

the string potential, holds)

θ00(r) = −|ǫv| c−1 + 2 |ǫv|
1

4πr2Ē2
0

c−1 = −|ǫv|
(

1 − 3r2
0

r2

)

, r ≈ r0 . (7.3)

After the subtraction of the vacuum term in (7.3) the energy density decreases as 1/r2

implying that the total energy stored in the infrared gluon configuration is linear in distance.

This is yet another way to see the formation of the flux tube at (rather short) distances

r ≈ r0. We see also that the energy density changes sign at r =
√

3r0 which can be

identified with the radius of the flux tube, while |ǫv| is the difference in the energy density

inside and outside of the tube, analogous to the bag constant.

8 Relation to ’t Hooft’s “perturbative confinement”

Lagrangian (3.4b) is a particular realization of ’t Hooft’s “perturbative confinement” [20]

approach. It is instructive to review the arguments given in [20]. The most general renor-

malized Lagrangian L = f(F 2
µν) can be written in the form

L(A,φ) = −1

4
Z(φ)F 2

µν − V (φ) + JµAµ , (8.1)
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where φ is a scalar field with self-action V (φ) and Jµ is an external source. We assume

the quasi-Abelian gauge thus dropping the color indices. The requirement of confinement

imposes a restriction on functions V (φ) and Z(φ). To derive these conditions we introduce

the electric displacement field ~D
~D = Z(φ)~E . (8.2)

Then extremizing (8.1) with respect to φ yields

1

2
D2 = − ∂V

∂(1/Z)
(8.3)

Consider now the energy density U(D,φ) stored in a particular configuration of D

and φ fields

U = ~D · ∂0
~A − L =

1

2

D2

Z(φ)
+ V (φ) + J0A0 . (8.4)

Variation in a configuration results in change

dU =
1

2
D2 d

1

Z
+

1

Z
d

(

1

2
D2

)

+ dV =
1

Z
d

(

1

2
D2

)

. (8.5)

Now, confinement occurs when the most energetically favorable configuration corre-

sponds to the linearly rising potential

U( ~D) = ρ | ~D| (8.6)

at least at small values of | ~D|, i.e. in the transition region between perturbation theory

and confinement. In (8.6) ρ can be readily identified as a string tension. In this region

where (8.6) holds we have using (8.5)

1

Z
=

dU

d(D2/2)
≈ dρ

d(D2/2)
=

ρ

D
. (8.7)

With the help of (8.3) we derive

V = −
∫

1

2
D2 d(1/Z) ≈ 1

2
ρD =

1

2
ρ2Z . (8.8)

Let us now rewrite (3.4b) in a suggestive form

L = −V (χ) − Z(χ)
1

4
(F a

µν)2 . (8.9)

were the following notations were introduced

Z(χ) = −eχ (1 − χ) c + 1 , V (χ) = −|ǫv| eχ (1 − χ) . (8.10)

The resulting values of V and ∂V/∂Z are displayed in figure 2 for β(g)
2g = 1.

At large values D the energy density must take the perturbative form U = D2/2.

Therefore, (8.7) it implies that Z → 1 which in turn corresponds to χ = 1.
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0
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1
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Z
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1−B
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Figure 2. A particular realization of the ’t Hooft’s perturbative confinement [20] as explained

in the text.

9 Numerical estimates

Let us check whether the relations following from our effective theory make sense phe-

nomenologically. To do this, we have to choose numerical values for the parameters en-

tering the Lagrangian (2.4): the dilaton mass m and the vacuum energy density |ǫv|. In

addition, since the effective theory (2.4) is non-renormaliable, we also have to specify the

value of the matching scale M0. This value will also determine the value of the strong

coupling αs(M0) thus defining the constant c. Since we have not introduced light quarks

so far, our estimates will be applicable to pure gluodynamics.

In gluodynamics, the dilaton has to be identified with the scalar glueball; lattice QCD

gives the mass of m = 1.5÷1.7 GeV, and we pick the value m = 1.6 GeV. In accord with our

previous work we choose M0 = 2 GeV for the scale M0 at which the perturbation theory

starts to apply. The corresponding value of the QCD coupling is αs(M0) ≃ 0.35, and

c = |β(g0)|/2g0 ≃ b αs(M0)/(8π) ≃ 0.15; we used b = 11 as appropriate for gluodynamics

with Nc = 3.

The value of the vacuum energy density is somewhat uncertain; in gluodynamics it is

related to the gluon condensate by the relation |ǫv| = 11/32〈(αs/π)F 2〉. The original value

of the gluon condensate is 〈(αs/π)F 2〉 = 0.012 GeV4 [25]. The latest analysis [30] (including

in particular an updated knowledge of αs) yields a significantly smaller value 〈(αs/π)F 2〉 =

0.005 ± 0.004 GeV4 leading to |ǫv| = 0.0017 ± 0.0014. In this situation we will work back-

wards and pick the value of |ǫv| using the relation (3.7). Eq. (3.7) relates the value of the

vacuum chromo-electric field Evac (which according to (3.10) plays the role of string tension

in our approach) to the values of |ǫv| and c. Choosing Evac ≃ 800 MeV/fm for the string ten-

sion and the value c = 0.15 inferred above we get for the vacuum energy density from (3.7)

|ǫv| ≃ 0.0019 GeV4, (9.1)

a value consistent with the analysis [30]. The radius of the flux tube can now be found

from (7.3) and (6.7); numerically, we find rtube ≃ 0.2 fm, a reasonable value.

Admittedly there is a significant uncertainty in the values of the parameters |ǫv| and

M0 of the effective Lagrangian (2.4). However reasonable choices of these parameters yield

phenomenologically sound values of the string tension, the radius of the flux tube and the

value of the effective coupling in the infrared.
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10 Discussion

An effective theory of broken scale symmetry of QCD given by the Lagrangian (2.4) which

we have advocated here and elsewhere [8, 9] possesses a number of remarkable properties:

it yields confinement, and links the formation of color tube to the emergence of a massless

scalar excitation — “the scalaron”. Let us describe the relevant degrees of freedom in this

theory at different distances in simple physical terms. At large distances, the gluons are

bound into massive scalar glueballs. At shorter distances (inside the hadron) the quasi-

Abelian color flux tube is found, and the dominant degree of freedom are the massless

dilaton excitations, the scalarons. At still shorter distances we encounter gluons with

non-perturbative interactions induced by the coupling to scalarons. Finally, at very short

distances we match onto the usual QCD perturbation theory.

The basic idea of modifying the dynamics of gluon fields at large distances is of course

not new, and several approaches of that kind were mentioned in the Introduction. The

distinctive feature of the approach advocated in this paper is that our effective Lagrangian

is fixed entirely by scale anomaly. Knowing the structure of the effective Lagrangian allowed

us to establish that it possesses the property of confinement, and to link the formation of

color confining flux tube to the emergence of massless scalar excitation.

In our opinion the effective theory (2.4) provides a way for systematically computing

non-perturbative corrections to various amplitudes; we think it is worthwhile to pursue

the phenomenological applications both at zero and finite temperature. We have already

discussed the IR behavior of the strong coupling in this framework [9] and the effect of

soft gluon emission on the structure of the leading Regge singularity at high energies, i.e.

the Pomeron [8]. This approach has an interesting implication also for the spin structure

of the nucleon — since the gluons at semi-hard scales are bound in this picture into scalar

(spin-singlet) scalaron states, there should be no contribution from gluons to the spin

of the hadron at semi-hard scales where the perturbative evolution is initiated. This is

perhaps consistent with the preliminary results on the fraction of the proton’s spin carried

by gluons from RHIC and elsewhere.

It has already been demonstrated that the dilaton excitations near the critical tem-

perature are responsible for the anomalous bulk viscosity [21]. Likewise it determines the

behavior of the trace of energy-momentum tensor at temperatures above Tc and may give

an important contribution to the parton energy loss. In the deconfined phase color charges

are screened at distances of the order of the inverse Debye mass, while the massless dila-

tons mediate the long-range strong force with possible important influence on the global

dynamics of the quark-gluon plasma. It would also be very interesting to extend the ap-

proach outlined here to include the quarks. In this case we expect that the coupling to the

dilaton will affect the mechanism of chiral symmetry breaking. The massive dilaton state

that we identify with the scalar glueball will mix with the scalar quark-antiquark meson.

The massless “scalaron” corresponding to a gapless excitation of the color flux tube will

likely affect the value of the quark condensate inside the flux tube. We plan to address

these questions in the future.
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